Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kanagasabapathy Thanikasalam, ${ }^{\text {a }}$ Ramasubbu Jeyaraman, ${ }^{\text {a }}$
Krishnaswamy
Panchanatheswaran, ${ }^{\text {a }}$
John N. Low ${ }^{\text {b }}$ and
Christopher Glidewell ${ }^{\text {c* }}$
${ }^{\mathrm{a}}$ School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India,
${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\text {c }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.062$
$w R$ factor $=0.153$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-Benzyl-2-[(2RS,3SR,6SR)-3-methyl-4-oxo-2,6-diphenylpiperidin-1-ylcarbonyl]-2-phenylethenyl phenylacetate

Molecules of the title compound, $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{NO}_{4}$, are weakly linked into chains by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and pairs of such chains are linked by a single aromatic $\pi-\pi$ stacking interaction.

Comment

The reactions of acyl chlorides with piperidines in a 1:1 molar ratio in the presence of a suitable base yields the N-acyl derivatives, but the yields are sometimes low. This observation prompted us to carry out the reaction of 3-methyl-2,6-diphenylpiperidin-4-one with an excess of phenylacetyl chloride. The ${ }^{13} \mathrm{C}$ NMR spectrum of the product contained three absorptions at 168, 170 and 210 p.p.m. indicative of the presence of three different carbonyl environments. The present investigation was therefore undertaken to establish the constitution, configuration and conformation of the product, the title compound, (I) (Fig. 1).

(I)

The piperidone ring adopts a boat conformation with a pseudo-mirror plane containing atoms C33 and C36; the ringpuckering parameters (Cremer \& Pople, 1975) for the atom sequence N31-C32-C33-C34-C35-C36 are $\theta=94.1$ (2) ${ }^{\circ}$ and φ $=122.0(2)^{\circ}$, very close to the ideal values for a boat conformation of $\theta=90^{\circ}$ and $\varphi=(60 n)^{\circ}$. The substituents at C32 and C33 occupy equatorial sites and that at C36 occupies an axial site. In the selected reference molecule, the configuration at C 22 is R and those at C33 and C36 are both S. The centrosymmetric space group accommodates equal numbers of the $R S S$ and $S R R$ enantiomers.

The presence of a vinylic ester is shown clearly by the geometry involving atoms C 1 and C 2 (Table 1). There are two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds within the molecule, both involving atom O1 as the acceptor (Table 2), and these may have

Received 8 March 2006
Accepted 8 March 2006

Figure 1
The RSS enantiomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A stereoscopic view of part of the crystal structure of (I), showing the formation of a π-stacked pair of $C(12)$ chains along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
some influence on the overall molecular conformation. A third hydrogen bond (Table 2) links the molecules into chains: atom C 47 at (x, y, z) acts as donor, via $\mathrm{H} 47 A$, to atom O 4 at $(-1+x$, y, z), so generating by translation a $C(12)$ (Bernstein et al., 1995) chain running parallel to the [100] direction (Fig. 2). Two such chains, related to one another by inversion, pass through each unit cell and these chains are linked by a $\pi-\pi$ stacking interaction. The C61-C66 rings in the molecules at (x, y, z) and ($1-x, 1-y,-z$) are strictly parallel, with an interplanar spacing of $3.523(2) \AA$; the ring-centroid separation is 3.868 (2) \AA, corresponding to a ring offset of 1.597 (2) \AA. Propagation of this interaction by translation and inversion then links a pair of [100] chains into a molecular ladder (Fig. 2).

Experimental

The title compound was prepared by heating under reflux a benzene solution of 3-methyl-2,6-diphenylpiperidin-4-one with a fourfold molar excess of phenylacetyl chloride in the presence of triethylamine. The resulting solid product was crystallized from aqueous ethanol, yielding crystals suitable for single-crystal X-ray diffraction (yield 48\%, m.p. 419-421 K).

Crystal data

$\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{NO}_{4}$
$M_{r}=619.73$
Triclinic, $P \overline{1}$
$a=9.3027$ (3) Å
$b=12.1333$ (5) \AA
$c=14.5927$ (6) \AA
$\alpha=88.7510(17)^{\circ}$
$\beta=78.574$ (3) ${ }^{\circ}$
$\gamma=85.653$ (2) ${ }^{\circ}$
$V=1609.79(11) \AA^{3}$
Data collection
Bruker-Nonius KappaCCD
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.985, T_{\text {max }}=0.997$
34829 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.153$
$S=1.01$
7423 reflections
425 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{C} 2$	$1.332(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.519(3)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.415(2)$	$\mathrm{C} 2-\mathrm{C} 21$	$1.485(3)$
$\mathrm{C} 1-\mathrm{C} 17$	$1.494(3)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$114.70(18)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.53(19)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 17$	$130.9(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21$	$127.73(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 17$	$114.38(17)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 21$	$115.55(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-7.7(3)$	$\mathrm{C} 36-\mathrm{N} 31-\mathrm{C} 32-\mathrm{C} 51$	$-115.6(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21$	$177.47(18)$	$\mathrm{N} 31-\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 37$	$165.83(19)$
$\mathrm{C} 17-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21$	$-1.3(4)$	$\mathrm{C} 34-\mathrm{C} 35-\mathrm{C} 36-\mathrm{C} 61$	$-77.2(2)$
$\mathrm{C} 17-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$173.5(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12 \cdots O1	0.95	2.42	$3.075(3)$	126
C47-H47A \cdots O4 4^{i}	0.99	2.59	$3.571(3)$	172
C66-H66 \cdots O1	0.95	2.53	$3.469(3)$	172

Symmetry code: (i) $x-1, y, z$.
All H atoms were located in difference maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95$ (aromatic), $0.98\left(\mathrm{CH}_{3}\right), 0.99\left(\mathrm{CH}_{2}\right)$ or

organic papers

$1.00 \AA$ (aliphatic CH), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

